

Welcome to ohua’s documentation!

Contents:

	Stateful functions
	Stateful functions in Java

	Stateful functions in Clojure
	Stateless Clojure functions

	Stateful Clojure functions

	Stateful functions in Scala

	Importing syntax

	The standalone compiler: ohuac
	Getting it
	Building from source / Getting the source code

	Usage
	The build command

	Universal options

	Supported targets for code generation
	JSON Graph repesentation

	A simple runnable java class

	Frontends for ohua algorithms

	Algorithms
	Defining algorithms

	Bringing stateful functions into scope

	Runtime execution model

	Organisation of the ohua project
	Repositories

	Documentation of compiler internals and API
	The dataflow language DFLang
	Writing DFLang

Indices and tables

	Index

	Module Index

	Search Page

Stateful functions

A stateful function is a piece of ‘native’ code which is sequentially executed by ohua and has for its execution context some associated, opaque state.

Concretely this means that a stateful function, in Java for instance, is a method and an associated class.

An example:

public class IntegerAccumulator {
 private int counter = 0;

 @defsfn
 public int increment(int valueToAdd) {
 counter += valueToAdd;

 return counter;
 }
}

For each invokation site of the stateful function ohua creates a new instance of the associated class.
And each time that particular piece of code is run the same instance of the associated class is handed to the method.

Defining stateful functions is currently supported for three languages: Java, Clojure and Scala.
In theory however any language can define a stateful function, so long as it creates JVM bytecode for a class and a method.

Stateful functions in Java

Defining stateful functions in Java is very simple.
Every stateful function needs an associated class.

The class must satisfy the following conditions

	
	The class must be public.

	This enables the runtime to find it.

	
	The class has a default constructor and is not abstract.

	Since the runtime cannot know what the constructor arguments should be it will attempt to instantiate it with none.

	
	Only one stateful funciton is defined on the class.

	The class may define as many methods and members as it wants, however it may only define one stateful function.
This restriction may be lifted in the future.
However for the present if you wish to define multiple stateful functions in one file we suggest using static inner classes.

	
	If the class is an inner class it must be static.

	Otherwise the runtime will be unable to instantiate the class.

To define the stateful function on the class itself simply annotate the desired method with @defsfn.

public class AssociatedClass {

 @defsfn
 public String concat(String a, String b) {
 return a + b;
 }
}

The method must satisfy the following conditions

	
	The method must be public.

	Otherwise the runtime will not be able to call it.

	
	The method must not be static.

	Using a static method will lead to an arity exception.
If you must have a static version of your code define the static method and then define a second, non static method which calls the static one and annotate this one with defsfn.

Stateful functions defined in Java may be brought into scope for use in an algo using Bringing stateful functions into scope.

Stateful functions in Clojure

Stateful functions defined in Clojure may be brought into scope for use in an algo using standard Clojure require.

Stateless Clojure functions

You can use any normal clojure function in ohua.
User defined functions as well as library functions can be directly called in the ohua EDSL.

Warning

As of yet there is no support for lambdas

As an example, this does not work:

(ohua
 (let [x (accept socket)
 lam (fn [y] (... x))]
 ..)

Stateful Clojure functions

Stateful functions in Clojure are simply Clojure functions, which have been annotated with the metadata :init-state.
This :init-state metadata contains a Clojure expression which initializes the state for the stateful function.
This can be any Clojure expression and it may produce any Clojure data structure.
The exact reference returned by :init-state will be passed to every invokation of the stateful function.
Since this state reference will be passed to the function when invoked every Clojure stateful function must have as its first argument the reference for the state, usually called this.
Therefore if you require mutable state, we recommend using clojure atoms, mutable Java data structures or mutable clojure data structures.

There is a convenience macro called defsfn which works like defn but additionally takes as a second argument the :init-state expression.

; defined with defsfn
(defsfn aggregate (new java.util.ArrayList) [this arg1]
 (if (> (.size this) 6)
 (let [copy (new java.util.ArrayList this)]
 ; mutable actions are allowed
 (.clear this)
 copy)
 (.add this arg1)))

; defined with defn
(defn ^{:inti-state '(atom #{})} was-seen [this thing]
 (if (contains? @this thing)
 true
 (do
 (swap this conj thing)
 false)))

Stateful functions in Scala

Defnining stateful functions in Scala is basically identical to defining stateful functions in Java.
See the requirements for the method and associated class in How to define stateful functions in Java.
Annotate the method with @defsfn.

class Concat {
 @defsfn
 def concat(a:String, b:String) -> String = {
 a + b
 }
}

Stateful functions defined in Java may be brought into scope for use in an algo using Bringing stateful functions into scope.

Importing syntax

Stateful functions for use in the ohua macro are being brought into scope with a macro called com.ohua.lang/ohua-require.
The ohua-require macro scans the classpath for the specified functions, loads them and makes them available for use with ohua in the namespace in which it was called.
It supports qualified and unqualified imports as well as aliasing for both namespaces/packages and functions.

Important

Importing stateful functions like this makes them available only for use in the ohua macro.
They will not be available via the standard clojure symbol resolution.
If you must resolve the functions yourself use com.ohua.link/resolve.

The syntax for ohua-require is intentionally similar to clojure.core/require.

(ohua-require
 [my.package]
 [my.package :as package]
 [my.package :refer [function]]
 [my.package :refer :all])

The macro takes a lists or vectors as input.
The first element of each is the name of a package/namespace which should be imported.
Functions from the package are then available qualified as my.package/function.
Optionally you may alias the package using the :as keyword and providing a new name to bind the package to.
And lastly you may use :refer to specify functions which should be imported such that they may be used unqualified.
:refer :all makes all functions from the package available as unqualified imports.
These are the only require semantics which are currently implemented.

The standalone compiler: ohuac

The ohuac executable is a standalone program which can compile a source file
written in one of the ohua Frontends for ohua algorithms and generate code for various platforms.

Getting it

Prebuilt binaries are available for 64bit Linux and OSX. Provided for each
release by Travis CI [https://travis-ci.org/ohua-dev/ohuac].

Simply download the appropriate executable for you platform (ohuac-linux or
ohuac-osx) from the releases page [https://github.com/ohua-dev/ohuac/releases/latest].

Building from source / Getting the source code

The source code for the compiler can be found on GitHub [https://github.com/ohua-dev/ohuac]. However major parts of the compiler are
separate libraries. For more information on the repository structure see the
project organisation page.

ohuac is written in Haskell and uses the stack tool [https://docks.haskellstack.org] for building and dependency management.
If you have stack installed already you can simply download the source from the
releases page [https://github.com/ohua-dev/ohuac/releases/latest] and run stack install.

This downloads and builds all dependencies, as well as the Haskell compiler
ghc, should it not be present already. It should not interfere with any
system-level libraries, Haskell ecosystems etc.

It builds the executable ohuac and copies it to ~/.local/bin. If you do
not wish this use stack build instead and find the path of the finished
binary using stack exec -- which ohuac afterwards. After building the binary
can be freely moved to any location on the system.

Usage

The capabilities and options for the compiler can be interactively explored by
calling ohuac --help or ohuac COMMAND --help to get help for a specific
COMMAND.

The build command

The most common command is build.

The build command transitively builds your ohua modules. This means it not only
compiles the one module you directly specify but also all modules it may depend
on.

Currently the search path for modules cannot be influenced. Therefore they must
be in a specific location, which is module/submodule.ohuac. The type of file
(.ohuac or .ohuas) does not matter in this case. In fact they can also be
mixed. A ohuas file can import a module that is defined as a ohuac file.

As an example we may have a module A.ohuac, which depends on foo.bar.B
and foo.C.

A
|-- foo.bar.B
'-- foo.C

During compilation the compiler will look for these dependencies
at foo/bar/B.ohuac or foo/bar/B.ohuas and foo/C.ohuac or
foo/C.ohuas. All paths being relative to the current working directory.
So if the compiler was called with ohuac build A.ohuac, the working
directory is expected to look something like this

WORKING_DIR/
 |-- A.ohuac
 '-- foo/
 |--bar/
 | '-- B.ohuac
 '-- C.ohuas

If both an .ohuac and .ohuas file is found for a particular dependency
the compiler will exit with an error.

Universal options

The options listed in ohuac --help apply to all subcommands. They are
generally prepended to the options passed to the subcommand.

Supported targets for code generation

The standalone compiler currently supports two compilation targets. One is a
universal format, which simply encodes the dataflow graph directly in JSON and a
second which creates a java class.

JSON Graph repesentation

The JSON output from ohua is selected with the -g json-graph option.
The default file extension is .ohuao.

This representation only encodes the dataflow graph and the stateful functions
used. It is intended to be a universal, easily to use intermediate for backeds
which have no direct support in ohuac yet. Such a backend only has to define
the runtime for the dataflow execution and the loading and linking of stateful
functions, ohuac will take care of parsing, interpreting and optimising the
algorithms.

A simple runnable java class

The -g simple-java-class code gen option is a very lightweight code
generation for the java platform.

It generates a class where the module path is its package and the algorithm name
is the name of the class. E.g. namespace foo.bar.baz with the main
algorithm selected generates a class foo.bar.baz.Main.

For an algorithm main with arguments A, B, C and return type of D,
the class has the following structure

class Main {
 public static C invoke(A argument0, B argument1, C argument2);
 public static Configured configure(RuntimeProcessConfiguration configuration);

 public static class Configured {
 public Prepared prepare(A argument0, B argument1, C argument2);
 }
 public static class Prepared {
 public static D invoke();
 }
}

The argument and return types default to Object.

The structure of the class follows a simple schema. Each algorithm class has two
static methods invoke and configure. invoke simply executes the
algorithm with the default runtime parameters. configure allows
customization of runtime parameters.

Furthermore there are always two inner classes, Configured and Prepared.
The two inner classes represent stages of algorithm configuration.
Configured is a graph with an associated runtime configuration and can be
turned into a Prepared by calling prepare with the arguments specified
in the algorithm description.

Frontends for ohua algorithms

Algorithms

Algorithms are ohua’s high level abstraction of a dataflow graph.

An algorithm combines stateful functions and other algorithms into a program
which can then be executed by the ohua macro. The ohua macro decomposes
the algo into a dataflow graph which it executes in parallel.

Defining algorithms

The com.ohua.lang/algo macro allows one to define an algo using the Clojure
programming language. All functions which are used in the algo must be in scope
in the current namespace. See Bringing stateful functions into scope for more information.

Bringing stateful functions into scope

Runtime execution model

Organisation of the ohua project

Repositories

	ohua-core

	https://github.com/ohua-dev/ohua-core

This is the heart of the compiler. The core library that defines the
intermediate language, the dataflow graph, transitions, optimisations, hooks
etc.

	ohuac

	https://github.com/ohua-dev/ohuac

The standalone compiler. An executable which combines ohua Frontends for ohua algorithms and
core to parse algorithm files and generate code for various target platforms.

Documentation of compiler internals and API

	The dataflow language DFLang
	Writing DFLang

The dataflow language DFLang

The dataflow language is the bridge between the call by need lambda calculus and
a dataflow graph. It retains aspects of both but is neither completely. It is
represented as a sequence of let assignments, where the right hand side of
the assignment is always a call of a stateful function or dataflow operator.
Multiple arguments can be given to this call, however they must always be
references to either a locally (let) bound value, or an environment reference.

It is thus much more restricted than the algorithm language because it
does not support lambdas, and the RHS of let is not an arbitrary expression.

The dataflow language is defined in Ohua.DFLang.Lang.

Writing DFLang

It is sometime necessary (in particular for tests) to create DFLang values.
To avoid having to write them directly in Haskell, the ohua-test-tools
library includes a DFLang parser. This parser can be used in Haskell code
when the QuasiQuotes extension is enabled by importing Ohua.Test and
using the [embedDflang| Your dflang expression |] quasi quoter.

It supports the same style comments as the algorithm language.

An example:

let (x) (* target bindings *)
 = some.package/sf (* function reference *)
 <0> (* call site id *)
 [s] (* state source (optional) *)
 (a, b, c) (* arguments *) in
let (y, z) = dataflow other.package/a_dataflow_fn<1>() in
x

	Target Bindings

	A tuple of bindings that are created by this function call. The names
should be unique in the expression. Always has to be a tuple, i.e.
comma separated and surrounded by parentheses, even if only one value is
created. Can be empty.

	Function Reference

	The fully qualified reference to the function being called. The syntax is
namespace/functionName, i.e. ohua.lang/id. May optionally be
preceded by the keyword dataflow to indicate that this is not a simple
function but a dataflow operator, i.e. translates to the nodeType being
OperatorNode.

	Call Site Id

	A positive integer uniquely identifying this call. Uniqueness is not checked
but the behavior of the compiler is undefined if call site id’s are not
unique.

	State Source

	A value to be used as initial state for this function. Must be specified for
stateful functions and omitted for stateless functions. Can be a literal of
binding (same as arguments).

	Arguments

	A tuple of arguments as input to the function. As with target bindings these need to be comma separated and surrounded by
parentheses, but can be empty. In addition to local variables, such as
a, b, myVar, numeric literals 1, 0, -4, the unit
literal () and references to environment expressions are allowed as
arguments. The latter are positive numbers prefixed with $, i.e. $1,
$100.

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to ohua’s documentation!

 		
 Stateful functions

 		
 Stateful functions in Java

 		
 Stateful functions in Clojure

 		
 Stateless Clojure functions

 		
 Stateful Clojure functions

 		
 Stateful functions in Scala

 		
 Importing syntax

 		
 The standalone compiler: ohuac

 		
 Getting it

 		
 Building from source / Getting the source code

 		
 Usage

 		
 The build command

 		
 Universal options

 		
 Supported targets for code generation

 		
 JSON Graph repesentation

 		
 A simple runnable java class

 		
 Frontends for ohua algorithms

 		
 Algorithms

 		
 Defining algorithms

 		
 Bringing stateful functions into scope

 		
 Runtime execution model

 		
 Organisation of the ohua project

 		
 Repositories

 		
 Documentation of compiler internals and API

 		
 The dataflow language DFLang

 		
 Writing DFLang

_static/up.png

